Marginalizing stacked linear denoising autoencoders
نویسندگان
چکیده
Stacked denoising autoencoders (SDAs) have been successfully used to learn new representations for domain adaptation. They have attained record accuracy on standard benchmark tasks of sentiment analysis across different text domains. SDAs learn robust data representations by reconstruction, recovering original features from data that are artificially corrupted with noise. In this paper, we propose marginalized Stacked Linear Denoising Autoencoder (mSLDA) that addresses two crucial limitations of SDAs: high computational cost and lack of scalability to high-dimensional features. In contrast to SDAs, our approach of mSLDA marginalizes noise and thus does not require stochastic gradient descent or other optimization algorithms to learn parameters — in fact, the linear formulation gives rise to a closed-form solution. Consequently, mSLDA, which can be implemented in only 20 lines of MATLAB, is about two orders of magnitude faster than a corresponding SDA. Furthermore, the representations learnt by mSLDA are as effective as the traditional SDAs, attaining almost identical accuracies in benchmark tasks.
منابع مشابه
Marginalized Stacked Denoising Autoencoders
Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...
متن کاملDecoding Stacked Denoising Autoencoders
Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretat...
متن کاملMid-level Features for Audio Chord Estimation using Stacked Denoising Autoencoders
Deep neural networks composed of several pre-trained layers have been successfully applied to various tasks related to audio processing. Stacked denoising autoencoders represent one type of such networks. They are discussed in this paper in application to audio feature extraction for audio chord estimation task. The features obtained from audio spectrogram with the help of autoencoders can be u...
متن کاملTraining Stacked Denoising Autoencoders for Representation Learning
We implement stacked denoising autoencoders, a class of neural networks that are capable of learning powerful representations of high dimensional data. We describe stochastic gradient descent for unsupervised training of autoencoders, as well as a novel genetic algorithm based approach that makes use of gradient information. We analyze the performance of both optimization algorithms and also th...
متن کاملMultimodal Stacked Denoising Autoencoders
We propose a Multimodal Stacked Denoising Autoencoder for learning a joint model of data that consists of multiple modalities. The model is used to extract a joint representation that fuses modalities together. We have found that this representation is useful for classification tasks. Our model is made up of layers of denoising autoencoders which are trained locally to denoise corrupted version...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 16 شماره
صفحات -
تاریخ انتشار 2015